Data Clustering using Artificial Neural Network, Rough set Theory and Optimization Techniques
نویسنده
چکیده
Artificial Neural Network in particular Self Organizing Map (SOM) has been widely used in clustering analysis operations. SOM maps high dimensional data space into two dimensions colored grid. The crisp clustering which employs one threshold to determine cluster boundaries has poor performance in many complex and high dimension data sets. In this paper to improve the performance of clustering analysis, SOM is used to reduce the data dimensionality and to have optimized cluster boundaries Rough set theory and Optimization techniques has been employed in the second stage. In this proposed approach, first using SOM to cluster and reduce the dimensionality of the data set and using Rough set theory and optimization problems to reduce uncertainty that involved in cluster analysis, in the second stage, seems that has much better performance in compare with crisp clustering methods.
منابع مشابه
Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network
Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملContinuous Energy Values of 3-Amino-4-Nitraminofurazan Molecule by Modern Optimization Techniques
The conformational energy values of 3-amino-4-nitraminofurazan (C2N4O3H2) molecule changing with two torsion angles were firstly calculated using density functional theory (DFT) with Lee-Young-Parr correlation functional and 6-31 G(d) basis set on Gaussian Program. And then, these obtained discrete data were made continuous by using Fuzzy Logic Modelling (FLM) and Artificial Neural Network (ANN...
متن کاملIdentifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm
The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...
متن کاملRough Support Vectors: Classification, Regression, Clustering
Support vector techniques were proposed by Vapnik as an alternative to neural networks for solving non-linear problems. The concepts of margins in support vector techniques provides a natural relationship with the rough set theory. This chapter describes rough set theoretic extensions of support vector technologies for classification, prediction, and clustering. The theoretical formulations of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009